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Formation of damage in a structural element often causes failures which is not desirable at all
by a maintenance team. Identification of location and severity of damage can aid in taking
necessary steps to reduce catastrophic failures of structures. As a result, non-destructive
methods of damage detection have gained popularity over the last few years. In this paper,
a method of damage detection is proposed to identify the location and severity of damage by
hybridising a clonal selection algorithm with a differential evolution algorithm. The inputs
to the hybrid system are the relative values of the first three natural frequencies of the
damaged structure, and the outputs are relative crack locations and relative crack depths.
For training the hybrid system, the natural frequencies are found out using finite element
analysis and experimental analysis for different crack locations and crack depths. The test
results from the proposed hybrid method are compared with finite element analysis and
experimental analysis for validation, and satisfactory outcomes have been observed.
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1. Introduction

Dynamic characteristics are important factors which should be taken into consideration during
designing of structures subjected to vibration. A change in dynamic properties of the structures
shows changes in the system. This can be used for identification of faults in structural elements.
So the fault detection of the structures has gained popularity for decades. Guo and Sun (2011)
studied fault detection using a frequency response function. Sinha et al. (2002) predicted location
of cracks in beam structures using measured vibration data. Caddemi and Morassi (2013) used
mathematical modelling of damage using vibration data in multi-cracked Euler-Bernoulli beams.
Most of the techniques developed for this problem were based on modal analysis of the vibrating
structures. Pawar and Sawant (2014) identified the effect of non-linearities, namely, material,
geometric and damping on natural frequencies and mode shapes of a cracked cantilever beam by
theoretical, numerical and experimental methods. Rahimi and Soltani (2015) proposed a com-
prehensive closed-form approach to determine the dynamic response of single degree-of-freedom
and multi degree-of-freedom systems subjected to stationary and non-stationary Gaussian exci-
tations. Pölöskei and Szekrényes (2017, 2018) discussed using a higher order theory for dynamic
stability analysis and a quasi-periodic excitation in a structurally damped delaminated compo-
site beam. Manoach et al. (2016, 2017) discussed vibration based damage detection methods
and dynamics of composite beams.
There have been considerable attempts to understand and model the dynamics of a vibrating

cracked beam. All models arising from theoretical consideration have a large number of assump-
tions to be made. Therefore, there is a need to use other approaches such as Artificial Intelligence
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(AI), techniques to find the severity of damage in a cracked structure. Xu et al. (2015) proposed
an efficient and powerful Bayesian Network for identification of faults in an uncertain dynamic
environment. Ling et al. (2009) discussed regarding a modified clonal selection algorithm in an
engineering application. Clonal selection algorithm (CSA) is a type of Artificial Immune System
(AIS) based on the clonal selection principle (CSP). De Castro and von Zuben (2000) investiga-
ted the potential of the CSA method to be used as an engineering problem solving method. Xie
et al. (2013) presented the theory of CSP that recounts the immune response when the antigens
are identified. Despite of several advantages in good approximation for finding the global solution
in different multimodal problems, the major shortcoming of CSA is identified as premature and
slow convergence. Owing to prematurity, the CSA method usually fails to search for new possi-
ble solutions. For this reason, the method generally gets trapped in one of local solutions. The
CSA method is used to converge slowly when searching for better solutions in high dimensional
problems. Recently, many investigations have been made to control these limitations; some of
the researchers have used elimination of the oldest candidate solutions and employment of the
chaos-based mutation strategy for improving the diversity of the possible candidate solutions.
Campelo et al. (2005) and Timmis et al. (2008) proposed a local search technique and immune
memory encoding by incorporating into the standard CSA method to enhance exploitation of
the population. Alternatively, other algorithms which can be integrated in the standard CSA
method are incorporated. The differential evolution algorithms (DEA) have also been used to
improve the searching capability of the CSA method. Qin and Suganthan (2005) used a self-
-adaptive DE for numerical optimisation. Tang (2012) used evolutionary operations such as the
DEA for parameter estimation of the Wiener model. Abdullah et al. (2011) presented a method
to reproduce and relocate antibodies to enhance fitness values by integrating CSA with an evo-
lutionary algorithm. Gong (2012) and Gong et al. (2012) discussed a high performance immune
system in their work. Garain et al. (2006) used CSA for recognition of handwritten Indic script.
Brest and Maučec (2011) proposed a self-adaptive DEA using population size reduction and
three strategies which can also be used in different fields of engineering.
In this research work, evolutionary operations of the DE method are used for improving

the exploration capability of the standard CSA. The proposed method has been designed by
hybridising CSA and DEA techniques. In this hybrid method (CSA-DEA), the crossover and
mutation operations are applied to exploit the information regarding different antibodies in the
population. This method can efficiently improve the searching quality compared to the standard
CSA and DEA methods. The architecture for applying the hybrid method has been given in
Fig. 1. This methodology has been adopted for finding out the relative crack depth and crack
positions from the relative natural frequencies of the vibrating system.

Fig. 1. Block diagram to find severity of damage in a cracked structure

Here, the first three natural frequencies are extracted from FEA and converted into rela-
tive values. The relative values of the natural frequencies (rfnf , rsnf , rtnf ) are found out by
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comparing the natural frequencies of the uncracked and cracked beam. Relative values of the
crack depth and crack location (rcd , rcl) are also found out using a similar method. This work
considers only the natural frequencies because they are less prone to error while calculating. The
relative first three natural frequencies are treated as the input variables for the proposed me-
thod. The outputs from the system are the relative values of the crack depth and crack location
which, in turn, contain the information of damage severity. The proposed method is a type of
an inverse analysis problem. Here, by giving the crack depths and crack locations, the natural
frequencies are found using theoretical, finite element and experimental analyses. These sets of
crack locations and first three natural frequencies are used as the dataset.

2. Theoretical analysis on dynamics of cracked beam

A fixed-fixed beam with a transverse hairline crack has been modeled in the present work.
Due to the presence of the crack, an additional flexibility is introduced which can be defined

in matrix form. In this work, a 2× 2 matrix is considered. The dimension of the matrix depends
on the degrees of freedom. The transverse surface crack is having depth a, width B and heightW .
Here, the beam is subjected to axial force P1 and bending moment P2 as shown in Fig. 2.

Fig. 2. (a) Cracked fixed-fixed beam, (b) cross sectional view of the cracked fixed-fixed beam

Due to the formation of the crack, some energy is released at the cracked section. This is
known as strain energy, and it is a type of potential energy. As per Tada et al. (1973), the strain
energy release rate (SR) at the cracked section is given below

SR =
1
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where ν is Poisson’s ratio, K11, K12 are the stress intensity factors of mode I (opening of the
crack) for load P1 and P2, respectively. The values of the stress intensity factors can be written
as (Tada et al., 1973)
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Let SE be the strain energy due to the crack. Applying Castigliano’s theorem, the additional
displacement ui along the force Pi can be derived as

ui =
∂SE
∂Pi

(2.5)

The strain energy will have the form

SE =

a
∫

0

∂SE
∂a
da =

a
∫

0

SR da (2.6)

where SR = ∂SE/∂a is the strain energy density function.
From (2.1) and (2.3), the additional displacement can be defined as

ui =
∂

∂Pi

(

a
∫

0

SR(a) da
)

(2.7)

The flexibility influence coefficient Cij can be written as

Cij =
∂ui
∂Pj
=
∂2

∂Pi∂Pj

a
∫

0

SR(a) da (2.8)

The final flexibility matrix can be found out as

Cij =
∂ui
∂Pj
=
∂2

∂Pi∂Pj

+B/2
∫

−B/2

a
∫

0

SR(a) da dz (2.9)

Putting the value of the strain energy release rate, equation (2.9) is modified as

Cij =
B

E′
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a
∫

0
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2 da (2.10)

Putting ξ = a/W , dξ = da/W , da =Wdξ, equation (2.10) is converted into
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Converting the influence co-efficient into dimensionless form

C11 = C11
E′B
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72π
(2.13)

The local stiffness matrix can be obtained by taking the inversion of the compliance matrix. The
nodal stiffness matrix is based on the compliance matrix calculation which is expressed by

S =

[

S11 S12
S21 S22

]

=

[

C11 C12
C21 C22

]

−1

(2.14)
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2.1. Analysis of vibration parameters of the beam element with a transverse crack

Figure 3 represents u1(x, t), u2(x, t) as the amplitudes of longitudinal vibration and y1(x, t),
y2(x, t) as the amplitudes of bending vibration for the beam element before and after the crack.
Here, the crack is assumed to be open during vibration, and the system is considered to be
linear.

Fig. 3. Amplitudes of longitudinal and bending vibration

The normal functions for the system can be defined as

U1(x) = A1 cos(Kux) +A2 sin(Kux) U2(x) = A3 cos(Kux) +A4 sin(Kux)

Y1(x) = A5 cosh(Kyx) +A6 sinh(Kyx) +A7 cos(Kyx) +A8 sin(Kyx)

Y2(x) = A9 cosh(Kyx) +A10 sinh(Kyx) +A11 cos(Kyx) +A12 sin(Kyx)

(2.15)
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where Ai (i = 1, . . . , 12) are constants which can be determined from boundary conditions of
the beam. The boundary conditions of the fixed-fixed beam in consideration are

u1(0) = 0 Y1(0) = 0 Y1
′

(0) = 0

u2
′(0) = 0 Y2

′′

(1) = 0 Y2
′′′

(1) = 0

u1(β) = u2(β) Y1(β) = Y2(β)

Y1
′′

(β) = Y2
′′

(β) Y1
′′′

(β) = Y2
′′′

(β)

(2.17)

The normal functions, along with the boundary conditions as mentioned above, yield the cha-
racteristic equation of the system as

detQ = 0 (2.18)

This determinant is a function of the angular velocity ω and the local stiffness matrix which
depends on the crack depth and crack location. The roots of equation (2.18) versus the angular
velocity ω provide the eigenvalues (natural frequencies) of the system.

3. Finite element analysis of cracked beam

For vibration analysis of the uncracked and cracked cantilever beam, the ALGOR V19.3 SP2
Finite Element program is used. First, the beam element with different single cracks is plotted
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using CATIA V5R15 software, and then they are treated in the ALGOR environment. The
uncracked and cracked beam model is then analysed in the ALGOR environment. First of all,
mesh generation is performed. The mesh size is around 1.4529mm, and 33369 elements are
created. Then the parameters such as the element type (brick and isotropic), material name
(Aluminium Alloy) are defined in the ALGOR environment. After that, boundary conditions
are given by constraining all degrees of freedom of the nodes located at the left end of the beam.
The model unit is then changed to S.I. standards. Then in the analysis window, the particular
analysis type is selected (natural frequency, i.e. modal analysis). Then the analysis is performed,
and the first three modes of natural frequencies at different crack locations and crack depths of
the fixed-fixed beam are recorded. Figure 4 shows modes of vibration of the cracked beam after
finite element analysis.

Fig. 4. First three modes of vibration of the cracked fixed-fixed beam

The length and cross-sectional area of the beam are 800mm and 38 × 8mm2, respec-
tively. As per material properties, the modulus of elasticity E is 70 000MPa, density ρ is
2700 kg/m3.

4. Analysis of fault detection using a simple clonal selection algorithm

The clonal selection theory (CST) is a type of the AIS approach. The idea behind the CST is
cloning of cells which are capable of identifying a foreign substance.

The CSA tells that when B cells antigen receptors (antibodies) bind with an antigen, B cells
become activated and proliferate into clones. As the clones are not very improved, they are
subjected to somatic hypermutation. CSA is the mechanism which guarantees diversity through
this operation. The cloning rate is proportional to the fitness of the B cells. The fittest cell
differentiates into clones the most. Then the mutated cells form plasma cells and memory cells.
The memory cells M commonly continue in the host for promoting a fast secondary response in
subsequent encounters with the same antigen. Figure 5 summarises the CST.

The antibodies (Ab) in the current investigation are consisting of rfnf , rsnf , rtnf , rcd and
rcl . The antigens are chosen randomly (Ag i.e. rfnf , rsnf and rtnf ) and are presented to the
antibodies in the collection or stock (dataset). The antigens represent the data from the field,
i.e., the values given from the working area. Here, each antibody and antigen is coded using a
binary encoding scheme. Then the antibody population is subjected to affinity measurement.
In the present work, the hamming distance method is used for the affinity matching operation.
The antibodies and antigens are presented in Fig. 6.

The clonal selection algorithm is described as follows:

1. First, the antibodies and antigens are initialized and encoded. Each antibody represents a
solution containing the parameters (rfnf , rsnf , rtnf , rcd and rcl) of the given problem.

2. All the antibodies (solutions) in the initial population are trained in the fitness function
(affinity function) with respect to the antigens (rfnf , rsnf and rtnf ).
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Fig. 5. Pictorial representation of the clonal selection algorithm

Fig. 6. Presentation of the antibodies and antigens

3. The antibodies are selected according to their fitness rank w.r.t antigens

Fitness function

=
√

(rfnf fld − rfnf x1,i)
2 + (rsnf fld − rsnf x1,i)

2 + (rtnf fld − rtnf x1,i)
2

(4.1)

rfnf fld , rsnf fld , rtnf fld = first three relative natural frequencies of the field.

4. For each selected antibody, clones are generated. The rate of cloning is directly proportional
to the affinity measurement. Clones of the selected antibodies are produced according to
the affinity proportion.

5. These cloned antibodies are then mutated using the hypermutaion operation of CSA. The
rate of mutation is indirectly proportional to the affinity measurement.
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6. The affinity measurement function is again applied to the mutated population of clones,
and the highest ranking antibody is selected as the candidate memory cell. If its affinity
score is more than that of the current memory cell, then it becomes a new memory cell.

7. Antibodies with a lower fitness from the population are removed and replaced by newly
generated higher ranking antibodies to form a new population for the next iteration.

8. Steps from 2-7 are repeated in each iteration till the algorithm meets the threshold values.

Table 2 provides the results of CSA.

5. Analysis of fault detection using simple differential evolution algorithm

Differential evolution which utilizes Np D-dimensional vectors of real valued parameters is a pa-
rallel direct search method. P (G) is the current population composed of encoded individuals Xi.
Figure 7 describes the idea of DEA which has been used for crack detection in the current
research work.

Here Xi = [x1, x2, x3, x4, x5], where x1 = rfnf , x2 = rsnf , x3 = rtnf , x4 = rcd , x5 = rcl ,
G – number of generations, D – number of parameters.

Fig. 7. Differential evolution algorithm

The following steps describe the working of DEA.

1. Read the parameters – scaling factor F , crossover constant Cr, population size Np, maxi-
mum iterations Gmax and decision variables D (i.e. rfnf , rsnf , rtnf , rcd and rcl).

2. Set the iteration G = 0, population index i = 1, decision variable j = 1.

3. Initialise the parent vector uniformly in the random search space. The initial value of the
j-th parameter in the i-th individual at the generation G = 0 is given as

x
(0)
j,i = x

min
j + randj(0, 1)(x

max
j − xminj j = 1, . . . ,D(5) i = 1, . . . , Np (5.1)

4. Once initialised, DE mutates the population to produce a population of Np mutant vectors

X
′(G)
i = X(G)a + F (X

(G)
b −X

(G)
c ) i = 1, . . . , Np (5.2)
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The indices a, b and c are randomly chosen. These indices are different from each other and
form the base vector index i. The scaling factor F is a real and constant factor F ∈ [0, 2].

5. After mutation, uniform crossover is employed to generate trial vectors X′′i by mixing the
mutant vectors and target vectors Xi

X
′′(G)
j,i =







X
′(G)
j,i if randj(0, 1) ¬ Cr or j = jrand

X
(G)
j,i otherwise

(5.3)

The crossover operation is applied to each pair of the target vectorXi and its corresponding
mutant vector X′i to generate a trial vector X

′′

i .
The crossover probability Cr ∈ (0, 1) is a user defined value. The crossover operator co-
pies the j-th parameter of the mutant vector X′i to the corresponding parameter of the
trial vector X′′i , if randj(0, 1) ¬ Cr, otherwise it is copied from the corresponding target
vector Xi.

6. Sometimes, the upper and lower bounds of the newly generated trial vectors exceed the
given value, and then they are randomly and uniformly initialised to the initial value
given previously. The objective function values of all trial vectors are evaluated. Then the
selection operator (according to the fitness rank) determines the population by choosing
between the trial vectors and their predecessors (target vectors):

a) if the trial vector X
′′(G)
i has an equal or lower fitness function value (optimal) than

that of its target vector X
(G)
i , it replaces the target vector in the next generation.

b) otherwise, the target vector retains its place in the population for at least one more
generation

X
(G+1)
i =







X
′(G)
j,i if f(X

′′(G)
i ) ¬ f(X(G)i ) i = 1, . . . , Np

X
(G)
i otherwise

(5.4)

Once the new population is installed, the process of mutation, crossover and selection are
repeated for several generations.

7. The algorithm stops after reaching threshold values for the target vector.

Table 2 gives the results of the differential evolution algorithm.

6. Analysis of fault detection using fusion of evolutionary CSA-DEA

Like other hybridized methods, these two nature inspired algorithms are incorporated to over-
come one another’s limitations. As they are integrated together, they retain some part of their
original algorithms features. Like the general CSA, the population of antibodies in the hybridi-
zed system (CSA-DEA) is initialised randomly. Then similarity measurement is done to find the
affinity of the antibodies for the antigens. There is no change in the antibody and antigen defini-
tion and representation. Then on the basis of the affinity measurement, some of the antibodies
are selected for the cloning process. The mutation and crossover are done using DEA on the
clones, and a new generation of antibodies is produced. After mutation and crossover, a selection
operator of DEA is applied on the original and offspring antibodies. The antibodies with poor
affinity values undergo randomisation according to DEA. These selected improved antibodies
form a new population. The antibody which produces the best affinity value is chosen as the
current best antibody, and the algorithm is repeated till it meets the stopping criteria.
In this hybrid scheme, DEA is used after initialisation and encoding of the antibodies, muta-

tion and crossover operation of the simple CSA. By employment of the evolutionary operations
of the DEA method in the mutation and crossover operation of the standalone CSA, the fitness
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values of different clones are enhanced. In the modified version of CSA, by the use of mutation
and crossover operations from DEA, the information of neighbouring clones is included against
the standard mutation operation which considers only the single clone and its original antibody
in the standard CSA method.
Following are the steps used in the hybridisation of CSA and DEA:

1. The initial population and fitness function are defined. Antibodies and antigens are enco-
ded.

2. Individuals in the initial population are evaluated using affinity measurement and ranked
according to their fitness values.

3. Individuals (n) according to their fitness values are selected.

4. The antibodies according to their affinity values undergo proliferation to create clones C.
The number of clones is directly proportional to the affinity values or fitness values. Figure 8
describes the cloning process in the CSA-DEA hybridized method.

Fig. 8. Cloning process applied to DEA individuals in CSA-DEA

5. The clones generated by proliferation undergo mutation using equation (5.2) of DEA.

6. The mutated clones undergo crossover using equation (5.3) of DEA.

7. After crossover, the selection operation is applied on all the antibodies using equation (5.4)
of DEA.

8. Then antibodies with poor affinity values are randomized using equation (5.1) of DEA.

9. These antibodies create a new population in the next generation.

10. If the stopping criteria are met then the antibody with the highest affinity is chosen as the
current best antibody, otherwise the algorithm is repeated. The stopping criteria for the
algorithms are i) treatment of all the antigens to the antibody population, ii) number of
iterations (50), and iii) time elapse (3 minutes). The algorithm terminates if it faces any
one of the stopping conditions first.

Figure 9 describes the flow chart for the CSA-DEA hybridisation technique.

7. Experimental set-up used in fault detection of the cracked beam

The instruments used in the free vibration analysis of the fixed-fixed beam are an impact ham-
mer, vibration pick-up, vibration analyser and vibration indicator (Fig. 10). Using the impact
hammer, the cracked fixed-fixed beam is excited in the free vibration mode. The vibration ana-
lyser is PULSE LAB Prolite 3560. The excitation parameters are picked up by the vibration
pick-up or accelerometer. Then these parameters are fed to the vibration analyser where the
parameters are analysed, and the results are shown in the vibration indicator.
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Fig. 9. Flow chart of the CSA-DEA algorithm

Several tests are conducted using the experimental setup on aluminium alloy beam specimens
(800mm×38mm×6mm) with a transverse crack for determining the natural frequencies at
different crack locations and crack depths. These specimens are given vibration by the impact
hammer, and the 1st, 2nd and 3rd natural frequencies are recorded in the vibration indicator.

8. Results and discussion

The following Tables 1-3 show the results obtained from the application of the proposed tech-
nique.
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Fig. 10. Experimental set-up; 1 – cracked fixed-fixed beam with a single crack, 2 – vibration pick-up,
3 – vibration analyser, 4 – vibration indicator, 5 – impact hammer, 6 – power distribution

Table 1. Results of hybridisation of CSA and DEA

No.
FEA results CSA-DEA results Percen. error

rfnf rsnf rtnf rcd rcl rcd rcl rcd rcl

1 0.9960 0.9999 0.9987 0.25 0.25 0.2451 0.24457 1.96 2.17

2 0.9965 0.9945 0.9966 0.5 0.375 0.24505 0.36663 1.98 2.23

3 0.99649 0.9999 0.99509 0.333 0.5 0.3256 0.48875 2.2 2.25

4 0.99979 0.9960 0.9996 0.333 0.3125 0.3257 0.30596 2.17 2.09

5 0.99982 0.9989 0.9997 0.1667 0.3125 0.16273 0.3052 2.36 2.33

Table 2. Comparison of the results of CSA, DEA with the hybridised CSA-DEA method

No.
FEA results CSA results DEA results CSA-DEA results

rfnf rsnf rtnf rcd rcl rcd rcl rcd rcl rcd rcl

1 0.9600 0.9598 0.9590 0.24 0.3225 0.2328 0.31266 0.2311 0.3105 0.2353 0.3197

2 0.9692 0.9690 0.9685 0.2333 0.4375 0.2260 0.4246 0.2243 0.4209 0.2285 0.4286

3 0.9757 0.9752 0.9748 0.225 0.45 0.2178 0.4357 0.2160 0.43236 0.2201 0.4405

4 0.9839 0.9836 0.9832 0.2167 0.5 0.2100 0.4839 0.2078 0.47955 0.2121 0.49035

5 0.9907 0.9894 0.9900 0.2 0.5625 0.19344 0.5448 0.1917 0.5390 0.19544 0.55074

The percentage error between the FEA result and the proposed technique is calculated using
the following formula

FEA result− result from the proposed technique
FEA result

× 100 (8.1)

The percentage error between the experimental result and the proposed technique is calculated
using the following formula

Exp. result− result from the proposed technique
Exp. result

× 100 (8.2)

The convergence behaviour of the proposed method can be observed in Table 1, in which CSA-
-DEA results are compared with the results of FEM. The errors are found to be within 3%. The
error analysis has also been done for Table 2. The errors in DEA are found to be within 4%, and
for CSA, the errors are found to be within 3.15%. It can be observed that the percentage of error
remarkably drops down to 2% for the CSA-DEA method. This occurs due to the employment
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Table 3. Results of experimental analysis

No.
Experimental results CSA-DEA results Percentage error

rsnf rsnf rtnf rcd rcl rcd rcl rcd rcl

1 0.9211 0.9219 0.9218 0.4 0.25 0.3858 0.24075 3.55 3.7

2 0.9463 0.9460 0.9458 0.367 0.3125 0.3537 0.30115 3.62 3.632

3 0.9552 0.9551 0.9549 0.2833 0.375 0.2733 0.36206 3.53 3.45

4 0.9621 0.9618 0.9616 0.25 0.4375 0.24075 0.42056 3.7 3.872

5 0.9705 0.9703 0.9700 0.2166 0.5 0.20869 0.4812 3.652 3.76

of crossover and mutation operations from DEA, which results in production of antibodies
with potentially good fitness values. The randomisation operation from DEA on the poor and
insignificant antibodies improves the fitness values of the antibodies in the next generation, and
it helps the algorithm to escape from being trapped in a local solution. It can also be observed
during the running of the algorithm that it performs with a good convergence speed without
getting trapped in the local solutions. For further justification, the results are also compared
with the results of the experimental analysis, as FEA is an approximate method. The results
of the experimental analysis are given in Table 3. The error is found to be within 4%. The
input variables with the respective outputs are first collected from various methods, and then
a set of input variables are treated in the proposed method to get the required outputs. So
this is a type of an inverse method which can be used as an inverse engineering problem for
fault diagnosis and condition monitoring. The comparison of the results obtained from different
techniques are in close agreement with each other having the minimal percentage of errors which
shows satisfactory operation of the proposed hybrid algorithm.

9. Conclusions

Damage detection using non-destructive techniques has drawn major attention over the last
few years. In the current work, a novel hybridisation approach has been proposed using CSA
and DEA for fault detection in structural elements. The underlying principles of the standalone
techniques are used to create the hybrid model. Here, the first three relative natural frequencies
are used as the inputs to the model, and relative values of crack depth and crack location are
obtained as the output. The results obtained from the CSA-DEA hybrid model are compared
with those from standalone CSA and DEA techniques, and a significant performance improve-
ment has been observed. Finally, the results from the hybrid model are also compared with the
results of FEM analysis and experimental analysis, and a close agreement has been observed
with the minimal percentage of errors.
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